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After the paper Cognition or genetics. Predicting progression to Alzheimer’s disease with practice effects, 

APOE genotype and brain metabolism [Neurobiol Aging, 2018; 71:234–240] was published, we identified 

a coding error of one of the variables analyzed. To correct, update and expand the previous work, we 

compared simple and complex regression-based Reliable Change Index (RCI RB ) to analyze the risk of pro- 

gression to AD (AD-risk) after six years using either delayed recall or recognition scores. Auditory Verbal 

Learning Test scores at six months for 394 individuals with normal cognition from the ADNI were used to 

build the regression. In 816 individuals with amnestic mild cognitive impairments, the AD-risk was asso- 

ciated with age, brain metabolism, APOE- ε4, recognition hits, the discrimination index, and low practice 

effects in the complex RCI RB only. The complex RCI RB outperformed the simple RCI RB . Small correlations 

were found between practice effects and both A β (highest r = 0.218) and TAU (highest r = -0.183). RCI RB 

are computationally simple and provide sensitive AD-risk estimates in combination with APOE- ε4 and 

FDG-PET. 

© 2022 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The rate of progression from amnestic Mild Cognitive Im-

pairment (aMCI) to Alzheimer’s disease (AD) varies depending

on several factors such as the source of recruitment and the

time frame under investigation. For example, Mitchell and Shiri-

Feshki (2009) reported that the rate of progression over a period

of 4.5 years on average was 17.1%–28.9% for community settings

and 33.1%–33.6% for specialist settings, according to the diagnos-

tic criteria used. Oltra-Cucarella et al., (2018a) reported that the

rate of progression was 10.4%–20.6% for community settings over

a period of 3.5 years on average, and 8.6%–40.4% for clinical set-

tings over a period of 2.6 years on average. Both studies agreed
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in two main issues regarding the risk of AD (AD-risk): that the

risk-AD was lower than the risk of remaining stable or reverting

to normal; and that the rate of progression varied across MCI sub-

types, with non-amnestic MCI showing a lower rate of progres-

sion compared to amnestic MCI (aMCI). For these reasons, new

ways of identifying individuals at the greatest AD-risk have been

investigated. One of these is repeated testing in memory tests, a

useful statistical approach to identify memory impairments using

change over time rather than using performance at a single time

point. 

Repeated cognitive testing can lead to incorrect conclusions if

an individual’s performance is compared against the same norma-

tive data on two occasions, because an increase in performance is

expected for a number of cognitive tests due to the exposure to

the same test in a previous occasion. This phenomenon, known as

practice effects ( Duff, 2012 ), has been documented in several pop-

ulations including MCI ( Calamia et al., 2012 ). Practice effects on

memory tests have been reported in individuals with aMCI within

the same session ( Duff et al., 2012 ) and over periods of one week

( Duff et al., 2017a ), eighteen months ( Campos-Magdaleno et al.,

2017 ) and even 5 years ( Gavett et al., 2016 ), have proven use-

ful to identify individuals with aMCI who will show larger cog-
 open access article under the CC BY-NC-ND license 
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nitive decline after one year follow-up ( Duff et al., 2011 ), and also

for improving the identification of individuals with MCI or those

who will progress to normal cognition to MCI ( Elman et al., 2018 ;

Kremen et al., 2020 ). However, some researchers have reported

no practice effects in individuals with aMCI over different periods

( Darby et al., 2002 ; Schrijnemaekers et al., 2006 ), so their utility

remains controversial. 

Practice effects have been associated with APOE- ε4 genotype

( Machulda et al., 2013 ; Zehnder et al., 2009 ) and with brain

metabolism, which in turn have been associated with the AD-

risk. It is known that APOE- ε4 carriers, mostly those carrying two

copies of the allele, have an increased AD-risk compared to APOE-

ε4 non-carriers and carriers of APOE- ε2 and ε3 alleles ( Elias-

Sonnenschein et al., 2011 ; Qian et al., 2017 ; Yu et al., 2014 ). In

the study by Machulda et al., (2013) , APOE- ε4 carriers failed to

sustain their initial practice effects over one year, with a level

of performance similar to baseline after approximately 6 years

of follow-up. Regarding brain metabolism, although data on the

accuracy of FDG-PET are highly variable ( Smailagic et al., 2015 ),

FDG-PET has been suggested as a more sensitive tool than cogni-

tive scores for predicting AD in aMCI ( Herholz et al., 2011 ). FDG-

PET has been associated with practice effects on tests of visual

and verbal memory, with more brain hypometabolism being as-

sociated with worse cognitive performance and lower practice ef-

fects ( Duff et al., 2015 , 2014 ). However, the associations between

practice effects and the AD-risk, and also the differential pre-

dictive value of AD for practice effects, APOE- ε4 genotype and

brain metabolism were not analyzed in either of these previous

studies. 

In our previous report ( Oltra-Cucarella et al., 2018b ), we aimed

to analyze whether practice effects for delayed recall scores were

useful to predict AD-risk in individuals with aMCI. After the pa-

per was published, we notified the editor of an unintentional

coding error. We noticed that we erroneously coded recognition

scores as delayed recall scores. Free recall and recognition are

two ways of assessing learning and memory. Whereas free re-

call relies on recollection through access to previously studied

material ( Tversky, 1973 ), recognition relies on both recollection

and familiarity ( Yonelinas et al., 2010 ). For this reason, perfor-

mance on recognition tasks is usually higher than that on free re-

call tasks, even in individuals with memory impairments, because

items not retrieved in free recall tasks can be identified as famil-

iar in recognition tasks. The importance of recognition scores in

MCI ( Bennett et al., 2006 ) has been reported in previous works.

Recognition scores have been found to improve the prediction of

AD ( Russo et al., 2017 ), have shown a lower false positive identifi-

cation of performance validity test than AVLT delayed recall when

combined with reliable digit span ( Loring et al., 2016 ), and might

be useful to discriminate between AD and other neurological dis-

eases ( Van Liew et al., 2016 ). 

When analyzing performance on recognition tasks it is nec-

essary to take account of both true positive and false pos-

itive responses. Thus, indices such as discrimination and re-

sponse bias have been used to assessing memory ( Stanislaw and

Todorov, 1999 ). In aMCI, discrimination scores have proven more

useful than both true positives and delayed recall scores for pre-

dicting progression to AD ( De Simone et al., 2019 ). In the assess-

ment of memory impairments, delayed recall scores show larger

differences between aMCI and cognitively healthy individuals than

recognition scores. For example, using the Consortium to Establish

a Registry for Alzheimer’s disease list learning test (range 0–15),

Bennett, Golob, Parker and Starr (2006) found that individuals with

aMCI recalled on average 6.1 fewer words than cognitively normal

individuals on the 30-min free delayed recall task, whereas the dif-

ference on the 30-minute recognition task (range 0–45) was 3.7.
De Simone, Perri, Fadda, Caltagirone and Carlesimo (2019) found

a larger difference (effect size = 1.48) in delayed recall scores

than in recognition scores (effect size = 0.98) between cognitively

healthy individuals and individuals with aMCI, and also that recog-

nition discriminability was the best predictor of progression to AD.

Thus, if the distribution of recognition scores is closer to the con-

trol group used to build the regression equation, recognition scores

should be expected to provide better estimates of practice effects

compared to delayed recall scores. 

The present work was developed to analyze the role of ver-

bal memory and practice effects for the prediction of AD. Specif-

ically, our objectives were 1) to analyze whether practice effects

for delayed recall scores and recognition scores are similarly use-

ful for predicting the AD-risk, 2) to compare simple and com-

plex RCI to identify the AD-risk, and 3) to compare practice ef-

fects with APOE- ε4 and brain metabolism in the identification of

progressors to AD. Additionally, we tested whether being catego-

rized as not showing practice effects is related to amyloidosis and

Tau levels obtained from cerebrospinal fluid (CSF). Previous works

have shown that individuals showing low practice effects are more

likely to have amyloid positivity in PET scans ( Duff et al., 2017b ,

2014 ; Mormino et al., 2014 ), with more amyloidosis being associ-

ated with lower practice effects. According to these data, we hy-

pothesized that 1) practice effects on recognition scores would

provide better estimates of the AD-risk than delayed recall scores

for individuals with aMCI, and that 2) complex RCI RB would be

better than simple RCI RB at identifying individuals at the greatest

AD-risk. We also hypothesized that individuals categorized as not

showing practice effects would show lower levels of amyloid-beta

(A β) and higher levels of Tau and phosphorylated Tau (pTAU) in

CSF. 

2. Materials and methods 

Data from the Alzheimer’s disease Neuroimaging Initia-

tive (ADNI) database ( adni.loni.usc.edu ) were used in this

study. The ADNI was launched in 2003 as a public-private

partnership, led by Principal Investigator Michael W. Weiner,

MD. The primary goal of the ADNI is to test whether se-

rial magnetic resonance imaging, positron emission tomogra-

phy (PET), other biological markers, and clinical and neuropsy-

chological assessment can be combined to measure the pro-

gression of MCI and early AD. For up-to-date information,

see www.adni-info.org. 

The normal cognition group (NC) included 394 participants

(48.2% females) aged 56–89 years with no depression or metabolic

diseases, no cognitive complaints, a Clinical Dementia Rating scale

(CDR) score = 0, Mini-Mental State Examination (MMSE) score

equal or higher than 24, normal education-corrected Logical Mem-

ory (LM) delayed recall scores, and no significant impairments in

activities of daily living. None of the individuals in the NC group

progressed to AD during a 6-year follow-up. 

In the aMCI group ( Petersen et al., 1999 ), 816 participants

(40.8% females) aged 55–91 years with no metabolic diseases

had subjective cognitive complaints, MMSE score ≥24, CDR

score = 0.5 (mandatory memory box score ≥0.5), abnormal

education-corrected LM delayed recall scores, general cognition

and functional performance largely intact, and did not meet cri-

teria for dementia. Five participants (0.6%) had mild depressive

symptoms. All participants underwent physical and neurologi-

cal examinations, screening laboratory tests, and provided blood

samples for DNA and APOE testing. The ethical committee at

each participating site approved the project, and all ADNI par-

ticipants provided written consent before enrollment at each

site. 

http://adni.loni.usc.edu
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1 Scores from a t-distribution with n = 394 approximate scores from a normal 

distribution and are comparable to z-scores 
2.1. Procedure 

2.1.1. Auditory verbal learning test (AVLT) 

The AVLT includes 15 words in List A that are read aloud over

five trials. After the last presentation, an interference list (List B)

with 15 different words is presented for a single trial, followed by

free recall of the 15 words from List A. A delayed free recall of

words from List A is obtained, followed by a recognition list in-

cluding all the words from Lists A and B. As per the ADNI protocol,

two equivalent alternate forms of the AVLT test were used across

sessions. 

2.1.2. Auditory verbal learning test – delayed recall scores 

The AVLT delayed free recall trial (variable AVDEL30MIN for

replication purposes) is administered 30 minutes after the last im-

mediate recall trial. Baseline data from the 394 NC participants

were used to predict AVLT delayed recall scores at six months (i.e.,

retest AVLT scores). 

To analyze practice effects, the regression-based Reliable

Change Index (RCI RB ) was used. The RCI RB compares observed

retest (Time 2) scores with predicted retest scores obtained with a

linear regression. In the present work, the term simple model will

be applied to the model in which retest scores were predicted us-

ing test (Time 1) scores alone, whereas the term complex model

will be applied to the model in which retest scores were predicted

using test scores in combination with a set of predictors. The RCI RB 

calculates practice effects controlling for test-retest reliability, re-

gression to the mean, floor and ceiling effects, and variability in

both test and retest scores ( Duff, 2012 ). The selection of the sta-

tistical model to calculate practice effects is not trivial, as com-

plex regressions might identify more change than simpler meth-

ods ( Duff et al., 2017a ), and the statistics used to identify indi-

viduals with low practice effects might be related to Type I error

( Crawford and Garthwaite, 2012 ). 

In the simple RCI RB model, retest AVLT delayed free recall scores

at six months were regressed on baseline AVLT delayed free re-

call scores only, whereas in the complex RCI RB model retest AVLT

delayed free recall scores at six months were regressed on base-

line AVLT delayed recall scores, age, sex and years of education.

AVLT delayed recall scores at six months were predicted in each

aMCI participant using the intercept, observed scores on each

predictor and their associated beta coefficients from the simple

and complex model separately. In both the simple and complex

RCI RB models, the discrepancy between predicted and observed

scores was divided by the standard error of the prediction for a

new case ( Crawford et al., 2012 ; Crawford and Garthwaite, 2007 ;

Crawford and Howell, 1998 ), and the standardized discrepancy was

compared against a t n-k-1 degrees of freedom distribution (where k

is the number of predictors and n is the sample size used to build

the regression equation). The t n-k-1 distribution is preferred over

a normal distribution because it treats the sample used to build

the regression equation as a sample and not as a population, and

it has a lower rate of type I error compared to a z distribution

( Crawford et al., 2012 ; Crawford and Garthwaite, 2005 ). The Reg-

Build_MR program for multiple regressions ( Crawford et al., 2012 )

was used to obtain the standard error of the prediction for each

case and the p-value associated with the standardized discrepancy.

2.1.3. Auditory verbal learning test – recognition scores 

The AVLT recognition trial is administered after the delayed free

recall trial. Two measures are derived: the number of hits (i.e.,

items correctly identified as words from List A; variable AVDELTOT)

and the number of false alarms (i.e., words erroneously identified

as included in List A; variable AVDELERR2). Practice effects were

calculated for the number of hits with the procedure detailed in
section 2.1.2 . To analyze whether the parameter estimates from the

regression equations were trustworthy, the four regressions were

repeated using 10,0 0 0 bootstrap replications. 

As in previous research analyzing recognition scores on aMCI

( De Simone et al., 2019 ), two measures related to recognition

were calculated. D-prime ( d’ ) was used as a discrimination in-

dex ( Stanislaw and Todorov, 1999 ), with higher values of d’ indi-

cating a greater ability to distinguish between true positive and

true negative responses. To calculate d’ , a correction was applied

whereby 0.5 was added to each frequency and the result was di-

vided by the number of items + 1 ( Snodgrass and Corwin, 1988 ).

The C-index was used as a measure of response bias ( Stanislaw and

Todorov, 1999 ), with negative values indicating a bias towards re-

sponding yes and positive values indicating a bias towards re-

sponding no . 

2.1.4. Practice effects groups 

In both the simple and complex RCI RB models, the p-value

associated with the standardized discrepancy was interpreted as

the percentage of individuals in the sample used to build the

RCI regression equation showing an equal or larger discrepancy

( Crawford and Garthwaite, 2007 ). Based on statistical cut-off points

used in research on practice effects, the bottom 5% of the NC

group was used to define low practice effects, which corresponds

to scores from a t-distribution of approximately -1.64 for a one-

sided test ( Crawford and Garthwaite, 2012 ) and a sample of size

n = 394 1 . Participants with aMCI showing a negative discrepancy

found in 5% or less of the NC group were labeled as showing low

practice effects (Low PE), whereas participants showing a discrep-

ancy higher than the 5% of the sample used to build the equa-

tion were labeled as showing normal practice effects (Normal PE).

Although a group of individuals with aMCI could show practice

effects higher than NC individuals used to build the regression

equation (e.g., > 95%), we did not analyze these individuals sepa-

rately because we were interested in analyzing individuals show-

ing low practice effects. Although we acknowledge that the 5%

cut-off point is arbitrary, it has been used to identify low prac-

tice effects ( Crawford and Garthwaite, 2012 ). Thus, our interest is

placed on “impairment” rather than on positive abnormality. The

use of a one-tailed t -score of -1.64 to define abnormality of nega-

tive discrepancies has been suggested as the appropriate procedure

when the RCI is used to analyze practice effects ( Crawford and

Garthwaite, 2012 ), especially when testing a directional hypothe-

sis ( Crawford and Garthwaite, 2007 ) as is the case in the present

study. However, recent works have used the standardized discrep-

ancy as a continuous variable to analyze whether practice effects

are associated with the risk of cognitive decline and with cerebral

biomarkers ( Duff et al., 2017b , 2014 ). For this reason, we included

the standardized discrepancy to analyze whether the continuous

variable provide any benefit over and beyond the categorical vari-

able use to identify PE. 

2.2. FDG-PET, A β and TAU measures 

For information about neuroimaging and biomarker data ac-

quisition see http://adni.loni.usc.edu/methods/. The variable FDG

from the ADNIMERGE file was analyzed, which indicates the base-

line average FDG uptake of angular, temporal and posterior cingu-

late gyri, with higher values of FDG-PET indicating higher cerebral

metabolism ( Landau et al., 2011 ). FDG-PET values were multiplied

by 100 for values to show the difference in the AD-risk for one
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unit increase in FDG-PET metabolism. Using this scale is also eas-

ier to interpret than using exponentiated values. One-hundred and

eighty-nine individuals with aMCI had missing FDG-PET values, re-

ducing the sample available to 623 participants. 

For data regarding CSF samples and the Luminex platform with

Innogenetics (INNO-BIA AlzBio3; Ghent, Belgium; for research use–

only reagents) immunoassay kit–based reagents see Shaw et al.,

(2009) . A β1-42 , total-Tau and p-Tau from 503 participants with

aMCI were included in the analyses after excluding participants

with missing values in any of the CSF biomarkers. The variables

ABETA, TAU and PTAU from the ADNIMERGE file were analyzed,

which provide the number of pg/mL for each biomarker. Lower

levels of A β1-42 in CSF indicate a higher level of cerebral amyloid

concentration, whereas higher levels of total-Tau and p-Tau in CSF

indicate higher levels of neuronal damage. 

2.3. Outcome 

The primary outcome was the difference in the hazard of

progressing to AD ( McKhann et al., 2011 , 1984 ) during a 6-year

follow-up period. Secondary outcome included differences in CSF

biomarkers between PE groups. 

2.4. Statistical analysis 

Continuous and categorical demographics were compared be-

tween groups with t-tests and χ-squared test respectively. For

continuous variables, parametric tests were used whenever sam-

ple sizes were higher than 85, as means and standard devia-

tions from samples this large are unbiased irrespective of skewness

( Piovesana and Senior, 2018 ) . The effect size of the differences was

calculated with Hedge’s g and the square root of the average of the

square standard deviations, with values of 0.20, 0.50 and 0.80 indi-

cating small, medium and large effect sizes respectively ( Fritz et al.,

2012 ). The risk of having at least one copy of the APOE- ε4 allele

was compared between groups using odds ratios (OR). The differ-

ential risk of being labeled as Low PE with either the simple or the

complex RCI RB was analyzed with ORs and the phi statistic for con-

tingency tables, with values of 0.10, 0.30 and 0.50 indicating small,

medium and large effects respectively ( Cohen, 1992 ) . 

The AD-risk in the aMCI group was compared with hazard ra-

tios (HR) from a series of backward stepwise Cox proportional sur-

vival models. Univariate models included AVLT raw scores or PE

groups as a binary variable. Multivariate models included the vari-

ables from the univariate models plus age, sex, education, MMSE,

APOE- ε4, and FDG-PET. For the delayed recall scores, the mul-

tivariate model included also the standardized discrepancies be-

tween predicted and observed scores, and baseline AVLT as covari-

ates, which allowed controlling whether the AD-risk for practice

effects was above and beyond baseline AVLT delayed recall scores

( Duff et al., 2017b , 2015 , 2011 ; Gavett et al., 2016 ; Hassenstab et al.,

2015 ). For recognition scores, the multivariate model included

also standardized discrepancies, baseline recognition hits and false

alarms, recognition discrimination index ( d’ ), and recognition re-

sponse bias (C-index). 

The survival models including simple RCI RB analyzed the effects

of age, sex, and education on the progression to AD, but no as-

sociation between demographic variables and practice effects. In

the survival models including complex RCI RB , the effects of de-

mographics were analyzed both for practice effects and for the

AD-risk. The assumption of proportionality was checked using log-

minus-log plots ( Vittinghoff et al., 2005 ). 

To analyze the association among memory scores, practice ef-

fects and CSF biomarkers, bivariate Pearson’s correlations were cal-

culated between the standardized discrepancies, A β and Tau val-
ues, and delayed recall and recognition AVLT scores. All statistical

analyses were performed using SPSS v.26, with alpha level set at

0.05. 

2.5. Comparison of the risk of AD according to clinical profile 

We categorized participants with aMCI into one of four groups

according to the clinical profile: group 1) participants showing low

practice effects but no APOE- ε4 alleles [i.e., Low PE/APOE- ε4-],

group 2) participants having at least one APOE- ε4 allele and nor-

mal practice effects [i.e., Normal PE/ APOE- ε4 + ], 3) participants

showing low practice effects and having at least one APOE- ε4 al-

lele [i.e., Low PE/APOE- ε4 + ], and group 4) participants showing

practice effects with no APOE- ε4 alleles [i.e., Normal PE/APOE- ε4-].

This latter group was used as the reference group for comparisons.

The AD-risk was compared among the four groups using a Cox re-

gression with age, sex, education, and MMSE baseline scores. 

3. Results 

Table 1 shows demographics, FDG-PET, APOE- ε4, A β , Tau, and

AVLT delayed recall and recognition scores for the NC and aMCI

groups. The NC group was slightly older and more educated than

the aMCI group. There was a higher proportion of women in the

NC group. Participants in the NC group had higher MMSE scores,

higher AVLT delayed free recall scores and hits at baseline and af-

ter 6 months, fewer false alarms at baseline and after 6 months,

higher brain metabolism, higher A β values, and lower Tau and p-

au values compared to the aMCI group. According to effect sizes,

differences between NC and aMCI groups were negligible for edu-

cation, small for age and Tau, medium for A β and pTau, and large

for MMSE scores. The rate of progression from aMCI to AD during

6-years of follow-up was 21.4%, similar to other studies using the

ADNI database ( Russo et al., 2017 ). 

3.1. AVLT delayed recall scores 

Hedge’s g showed that differences between NC and aMCI

groups were large for both test and retest AVLT delayed recall

scores. Retest AVLT delayed recall scores were significantly lower

than baseline AVLT delayed recall scores both for the NC group

(t 393 = 5.03, p < 0.001) and for the aMCI group (t 815 = 7.98, p <

0.001). The distribution of baseline raw AVLT delayed recall scores

showed that 56.6% and 37.1% of the aMCI group scored lower than

1SD and 1.5SD of the NC group respectively . 

As expected, the number of cases used to build the regres-

sion equation showing a standardized discrepancy equal to or

more extreme than -1.64 was close to the nominal 5% for both

the simple (4.8%) and the complex (4.8%) RCI RB models. The av-

erage discrepancy between predicted and observed delayed recall

scores in the aMCI group was -1.26 (SD = 2.98). The simple RCI RB

and complex RCI RB identified 32 (3.9%) and 40 (4.9%) individu-

als with aMCI showing a discrepancy between observed and pre-

dicted retest AVLT delayed recall shown by fewer than 5% of the

NC group. Bootstrap replications showed trustworthiness of confi-

dence intervals in the regression equations (Supplemental material

1). 

The Low PE category was highly correlated between the simple

and complex RCI RB model (phi = 0.80), so that the probability of

being labeled as Low PE with either model was similar (OR = 1.27,

SE = 0.24, p = 0.832). For the simple RCI RB model, 15.6% (n = 5) of

Low PE individuals progressed to AD, compared to 22% (n = 170)

Normal PE individuals. For the complex RCI RB model, 20% (n = 8)

Low PE individuals progressed to AD, compared to 21.8% (n = 167)

Normal PE individuals. 
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Table 1 

Demographics, cognitive scores and biomarker levels for NC and MCI groups 

NC (n = 394) MCI (n = 816) p Cohen’s d 

Sex (Female) 190 (48.2%) 333 (40.8%) 0.015 –

Age 74.83 (5.73) 73.06 (7.48) < 0.001 0.27 

Education 16.30 (2.73) 15.92 (2.86) 0.026 0.14 

MMSE 29.06 (1.14) 27.56 (1.82) < 0.001 0.98 

Test AVLT-DR 7.54 (3.8) 3.79 (3.83) < 0.001 0.98 

Retest AVLT-DR 6.72 (3.75) 3.11 (3.63) < 0.001 0.98 

Test AVLT-H 12.82 (2.42) 10.49 (3.48) < 0.001 0.78 

Test AVLT-F 0.78 (1.16) 1.75 (2.02) < 0.001 -0.59 

Retest AVLT-H 12.66 (2.44) 10.06 (3.65) < 0.001 0.84 

Retest AVLT-F 0.62 (1.29) 1.68 (2.09) < 0.001 -0.61 

d’ 1.83 (1.61) 1.91 (1.08) 0.271 -0.06 

C-index 0.33 (0.46) 0.31 (0.47) 0.505 0.04 

APOE- ε4 (1 + ) 107 (27.2%) 419 (51.3%) < 0.001 –

FDG-PET 130.70 (11.47) 124.43 (13.44) < 0.001 0.50 

Amyloid- β 1024.90 (386.92) 837.77 (341.25) < 0.001 0.51 

Tau 237.36 (87.29) 288.81 (129.53) < 0.001 -0.47 

p-Tau 21.84 (8.81) 28.04 (14.69) < 0.001 -0.51 

Key: AVLT-DR, auditory verbal learning test delayed recall scores; AVLT-F, auditory 

verbal learning test recognition false positive errors; AVLT-H, auditory verbal learn- 

ing test recognition true positive scores; C-index, response bias index at baseline; 

d’, d-prime discriminability index at baseline; MCI, mild cognitive impairment group; 

MMSE, mini-mental state examination; NC, cognitively normal group. 

Table 2 

Results for univariate and multivariate Cox survival regressions 

AVLT score RCI Model Cox regression Variables OR (95% CI) p 

Delayed recall Simple RCI RB Univariate AVLT-DR 0.76 (0.71–0.81) < 0.001 

Univariate PE 0.69 (0.29–1.69) 0.428 

Multivariate AVLT-DR 

PE 

t-scores 

0.82 (0.74–0.92) 

1.48 (0.29–7.63) 

0.75 (0.49–1.14) 

< 0.001 

0.638 

0.179 

Complex RCI RB Univariate PE 0.92 (0.45–1.86) 0.809 

Multivariate AVLT-DR 

PE 

t-scores 

0.82 (0.74–0.90) 

1.87 (0.48–7.38) 

0.76 (0.51–1.14) 

< 0.001 

0.369 

0.183 

Recognition hits Simple RCI RB Univariate Hits 0.85 (0.82–0.89) < 0.001 

Univariate PE 3.03 (2.24–4.08) < 0.001 

Multivariate AVLT-Hits 

PE 

t-scores 

0.91 (0.86–0.97) 

2.02 (1.28–3.19) 

0.92 (0.70–1.21) 

< 0.001 

0.003 

0.544 

Complex RCI RB Univariate PE 2.87 (2.13–3.86) < 0.001 

Multivariate AVLT-Hits 

PE 

t-scores 

0.91 (0.86–0.97) 

2.17 (1.37–3.43) 

0.82 (0.56–1.18) 

0.004 

0.001 

0.287 

Complex RCI RB model: retest scores regressed on test scores, age, sex, and education. See section 2.4 for variables included in the multivariate Cox regressions. 

Key: AVLT, auditory verbal learning test; DR, delayed recall; OR, odds ratio; PE, practice effects group; RCI RB , regression-based reliable change index; Simple 

RCI RB model, retest scores regressed on test scores. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Univariate survival models in the aMCI group showed that the

AD-risk was statistically associated with baseline AVLT delayed re-

call scores, but not with PE using either the simple or the complex

RCI RB model ( Table 2 ). Multivariate survival analyses for the simple

and complex RCI RB model showed that the risk-AD was related to

age (HR = 1.05, p = 0.008), FDG-PET (HR = 0.95, p = 0.0 0 0), MMSE

scores (HR = 0.88, p = 0.045) and baseline AVLT delayed recall

scores, but not with having one or more APOE- ε4 allele (HR = 1.52,

p = 0.083). Categorizing individuals with aMCI as Low PE was not

statistically significant for either the simple or the complex RCI RB 

models, nor were the z-scores associated with the discrepancy be-

tween predicted and observed retest AVLT delayed recall scores

( Table 2 ). The same results were found when both simple and

complex RCI models were entered into the survival regression. Log-

minus-log plots showed no evidence of non-proportionality (Sup-

plemental material 2). 
3.2. AVLT recognition scores 

Hedge’s g showed that differences between NC and aMCI

groups were medium to large for baseline AVLT hits and false

alarms, and non-significant for discrimination index and response

bias. AVLT recognition hits were similar at baseline and after 6

months in the NC group (t 393 = 1.28, p = 0.202), but were smaller

at retest in the aMCI group (t 815 = 4.07, p < 0.001). The distribu-

tion of test AVLT recognition hits showed that 45.1% and 27.8% of

the aMCI group scored lower than 1SD and 1.5SD of the NC group

respectively. These data indicate that the overlap of raw scores be-

tween the NC and the aMCI groups was larger for AVLT recognition

scores than for AVLT delayed recall scores. 

As expected, the number of cases used to build the regression

equation showing a standardized discrepancy equal to or more ex-

treme than -1.64 was close to 5% for both the simple (6.3%) and
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the complex (6.6%) RCI RB models. The average discrepancy between

predicted and observed recognition hits in the aMCI group was -

1.69 (SD = 3.83). The number of individuals categorized as Low PE

was 210 (24%) for the simple RCI RB and 210 (25.7%) for the com-

plex RCI RB. Bootstrap replications showed trustworthiness of confi-

dence intervals (Supplemental material 1). 

As for AVLT delayed recall scores, the Low PE category was

highly correlated between the simple and complex RCI RB model

(phi = 0.89), and the probability of being labeled as Low PE was

similar between both models (OR = 1.10, SE = 0.11, p = 0 .788). Of

the 606 individuals categorized as Normal PE, only 6 individuals

(0.7%) showed practice effects higher than cognitively normal in-

dividuals, which suggest that aMCI subjects tend not to improve

more than healthy controls. There were no statistically significant

differences between Low PE and Normal PE groups in age, sex or

education ( p values > 0.286). 

Individuals in the Low PE group were more likely to have at

least one copy of the APOE- ε4 allele (OR = 2.00, 95%CI = 1.45, 2.77,

p < 0.001) than participants in the Normal PE group. Overall, 174

(21.5%) individuals progressed to AD. The percentage of progressors

to AD was 39.3% in the Low PE group and 15.8% in the Normal PE

group for the simple RCI RB , and 37.6% in the Low PE group and

15.8% in the Normal PE group for the complex RCI RB . 

Univariate survival models showed that the AD-risk was statis-

tically associated with baseline AVLT hit scores, and with Low PE

using the simple and the complex RCI RB models ( Table 2 ). In the

multivariate survival model for the simple RCI RB model, the AD-

risk was associated with age (HR = 1.04, p = 0.037), MMSE scores

(HR = 0.87, p = 0.039), FDG-PET (HR = 0.96, p < 0.001), hav-

ing at least one APOE- ε4 allele (HR = 1.64, p = 0.039), baseline

recognition hits (HR = 0.91, p = 0.003), the discrimination index d’

(HR = 0.73, p = 0.002), and with being labeled as Low PE ( Table 2 ;

Supplemental material 3). 

For the complex RCI RB model, the AD-risk was associated with

age (HR = 1.04, p = 0.012), FDG-PET (HR = 0.96, p < 0.001), hav-

ing at least one APOE- ε4 allele (HR = 1.67, p = 0.033), baseline

recognition hits (HR = 0.91, p = 0.004), the discrimination index d’

(HR = 0.72, p = 0.001), and with being labeled as Low PE ( Table 2 ).

The continuous standardized discrepancy between predicted

and observed scores were not associated with the AD-risk either

for the simple or for the complex RCI RB models ( Table 2 ), nor were

recognition false alarms (HR = 1.07, p = 0.185) and recognition re-

sponse bias (HR = 0.94, p = 0.794). The same results were found

when both the simple and the complex RCI RB models were entered

into the survival regression, with the simple RCI RB model becoming

statistically non-significant. 

3.3. Association between practice effects and CSF biomarkers 

Table 3 shows the bivariate correlations between memory

scores, standardized discrepancies and CSF biomarkers in the

aMCI group. Delayed free recall scores correlated with recognition

scores, with higher delayed recall associated with higher recog-

nition hits (38.07% shared variance) and lower recognition false

alarms (10.89% shared variance). The continuous standardized dis-

crepancies between predicted and observed scores correlated with

delayed free recall scores and recognition scores, but not with

discrimination index d’ and response bias. CSF biomarkers corre-

lated with delayed recall scores, recognition scores and standard-

ized discrepancies. These correlations were higher for delayed re-

call (8.41%–9% shared variance) than for recognition scores (3.17%–

5.81% shared variance) or for standardized discrepancies (1%–4.75%

shared variance). Lastly, lower levels of A β were associated with

higher levels of Tau and pTau in CSF. Most correlations showed a

low to medium effect size. The only correlations showing a large
effect size were the correlations between delayed recall scores and

recognition hits. 

3.4. Comparison of the AD-risk according to clinical profile 

The survival regression showed that the AD-risk was higher for

individuals in the Low PE/APOE- ε4- group (HR = 2.49, p = 0.001),

individuals in the Normal PE/APOE- ε4 + group (HR = 1.97,

p = 0.002), and individuals in the Low PE/APOE- ε4 + group

(HR = 3.41, p < 0.001) compared to those in the Normal PE/APOE-

ε4- group. 

Figure 1 shows how the absolute AD-risk for participants with

aMCI over a 6-year follow-up when APOE- ε4 and 6-months prac-

tice effects are combined. As shown, for individuals meeting stan-

dard criteria for aMCI at baseline assessment, the expected AD-risk

at six years without any additional information is 21.4%. The AD-

risk increases for individuals with one or more APOE- ε4 alleles,

with a risk estimate twice as high as that for APOE- ε4 negative

individuals. Adding data on practice effects in recognition hits six

months after baseline again modifies the risk estimates. The AD-

risk among APOE- ε4 negative individuals is three times as high for

Low PE individuals, and also higher than the absolute risk for aMCI

at baseline. Among individuals with one or more APOE- ε4 alleles,

Low PE individuals have the greatest AD-risk, with a risk estimate

twice as high as that for aMCI diagnosis at baseline. Interestingly,

the AD-risk for APOE- ε4 negative and Low PE individuals is higher

than the AD-risk for APOE- ε4 positive and normal PE individuals,

which suggests that cognitive variables might be more useful than

APOE genotype to identify a greater risk of progression from MCI

to AD. 

4. Discussion 

After the original paper on PE and the AD-risk was published

( Oltra-Cucarella et al., 2018b ), we identified a coding error of the

AVLT delayed recall variable. This unintentional error could confuse

the readers and researchers, because delayed recall and recognition

are two different stages in memory and differ both theoretically

and in the distribution of scores. To avoid confusion and misinter-

pretation of our original results, the present study was conducted

to correct the coding error and aimed 1) to analyze whether the

RCI RB estimates differ for delayed recall scores and for recognition

scores, 2) to analyze whether complex RCI RB would provide addi-

tional value over simple RCI RB to identify individuals with aMCI

at the greatest AD-risk and, additionally, 3) to analyze the associ-

ation between practice effects and CSF biomarkers. Two main re-

sults must be highlighted. First, the complex RCI RB calculated with

age, sex, education and baseline scores was superior to the sim-

ple RCI RB model for predicting the AD-risk. Second, the superior-

ity of the complex RCI RB model was found when practice effects

were calculated for AVLT recognition hits, with no significant asso-

ciation between the AD-risk and practice effects for AVLT delayed

recall scores. Thus, the present work replicates the results of the

previous report, and also shows that the AD-risk was associated to

recognition scores rather than to delayed recall scores. 

The results reported here show that individuals with aMCI who

showed low PE on recognition task across two successive assess-

ments had a significantly higher AD-risk, and that the risk esti-

mate for PE was higher than that for FDG-PET values and APOE-

ε4 genotype. Although PE were related to genetic data as previ-

ously reported ( Duff et al., 2017b ; Machulda et al., 2013 ), with

the Low PE group being more likely to have at least one copy

of the APOE- ε4 allele, the Low PE category outperformed FDG-

PET in the identification of individuals at the greatest AD-risk, and

showed a similar and more precise risk estimate than APOE- ε4
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Table 3 

Correlations among cognitive scores, practice effects and CSF biomarkers 

2 3 4 5 6 7 8 9 10 11 12 

(1) AVLT DR 0.617 b -0.335 b 0.052 0.007 0.192 b 0.184 b 0.359 b 0.336 b 0.320 b -0.297 b -0.308 b 

(2) AVLT H 1 -0.090 b 0.062 -0.061 0.184 b 0.186 b 0.259 b 0.276 b 0.241 b -0.191 b -0.199 b 

(3) AVLT F 1 -0.008 0.005 -0.133 b -0.132 b -0.091 b -0.083 a -0.185 b 0.178 b 0.184 b 

(4) d’ 1 -0.356 b -0.005 -0.031 -0.001 -0.017 0.034 0.016 0.007 

(5) C-index 1 0.011 0.021 0.020 0.021 -0.008 -0.002 -0.002 

(6) DR t-values SR 1 0.966 b 0.359 b 0.340 b 0.218 b -0.105 a -0.122 b 

(7) DR t-values MR 1 0.355 b 0.374 b 0.196 b -0.111 b -0.127 b 

(8) Rec t-values SR 1 0.985 b 0.206 b -0.183 b -0.187 b 

(9) Rec t-values MR 1 0.185 b -0.181 b -0.183 b 

(10) Ab 1 -0.268 b -0.308 b 

(11) Tau 1 0.982 b 

(12) pTau 1 

Key: AVLT-DR, auditory verbal learning test delayed recall scores; AVLT-F, auditory verbal learning test recognition false positive errors; AVLT-H, 

auditory verbal learning test recognition true positive scores; C-index, response bias index at baseline; d’, d-prime discriminability index at baseline; 

MR, complex RCI model; SR, simple RCI model. 
a < 0.05. N = 816. N for A β = 503. N for Tau = 583. 
b < 0.01. 

Fig. 1. Estimates of the absolute AD-risk at six years according to clinical profile. NC: normal cognition. MCI: mild cognitive impairment. APOE- ε4 + : individuals with one or 

more APOE- ε4 allele. APOE- ε4-: individuals with no APOE- ε4 allele. Normal PE: individuals showing practice effects on the Auditory Verbal Learning Test recognition hits. 

Low PE: individuals not showing practice effects on the Auditory Verbal Learning Test recognition hits. “(For interpretation of the references to color in this figure legend, 

the reader is referred to the Web version of this article.)”

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

genotype. These results are in line with other reports analyzing

practice effects and biomarkers ( Nation et al., 2019 ). For example,

Hassenstab et al., (2015) found that APOE was not significant to

predict worsening of clinical symptoms of cognitive impairment.

Thus, our results cannot support that FDG-PET are more sensitive

than cognitive scores for predicting AD in aMCI, as previously sug-

gested ( Herholz et al., 2011 ). Duff et al., (2015) suggested that PE

can be a proxy of certain biomarkers, and our data add that prac-

tice effects and biomarkers might be a useful combination to iden-

tify individuals at the greatest AD-risk during a 6-year follow-up.

However, risk estimates for APOE- ε4 and FDG-PET may be biased

due to the association of these two variables in the ADNI database

( Landau et al., 2013 ). Our results are also in line with the findings

reported by Machulda et al., (2013) , who found that APOE carri-

ers’ performance was similar to baseline after an average follow-

up period of 6 years. The association between practice effects and

biomarkers is still under debate ( Jutten et al., 2020 ), so further

works are needed to replicate whether PE are similar or even su-
perior to genetic and biomarker data for predicting progression to

AD in different follow-up periods. 

One of the most important data in our work is related to the

importance of AVLT recognition scores for the prediction of AD, in

line with previous reports. Russo, Campos, Vázquez, Sevlever and

Allegri (2017) found that the interaction between AVLT delayed re-

call and recognition scores were significant to predict progression

from aMCI to AD in the ADNI database. Recently, De Simone et al.,

(2019) found that individuals with aMCI recalled fewer items than

did cognitively healthy individuals on a list-learning test, and were

worse in recognizing true positive items. Interestingly, the discrim-

ination index d’ was the variable that best predicted progression

to AD. Although d’ was statistically significant in our model, be-

ing labeled as Low PE with the RCI RB was the variable that best

predicted progression to AD. Of note is that the statistical analy-

ses used in the present work are not comparable to the ones used

by De Simone et al., (2019) , who analyzed progression to AD with

ROC curves, and also that we applied the correction to d’ suggested
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by Snodgrass and Corwin (1988) . The main result is that among

measures related to verbal memory, recognition on a list-learning

test may be more sensitive than delayed recall for the prediction

of progression from aMCI to AD. 

Previous studies comparing simple and complex RCI RB mod-

els reported that multiple regression models might identify more

change than simple regression models ( Duff et al., 2017a ). Our re-

sults support these conclusions, as complex RCI RB remained signif-

icant to predict the AD-risk, with both simple and complex RCI RB

models showing a higher AD-risk estimate when compared to

APOE- ε4 and FDG-PET. However, the high correlation between the

simple and complex RCI RB might cause collinearity in the analyses,

so the superior ability of the complex RCI RB must be replicated in

future works. One of the main characteristics of the RCI RB models

are that they can be calculated as long as raw data are reported,

because regression parameters can be computed using summary

statistics ( Crawford et al., 2012 ; Crawford and Garthwaite, 2007 ).

In the case of multiple regressions, a k x k matrix of correlations

is also needed ( Crawford et al., 2012 ). Due to the findings reported

in this and previous works ( Duff et al., 2017a ), we encourage re-

searchers to report correlations among variables that allow calcu-

lating the complex RCI RB for the individual case ( Table 2 ). However,

when it is not possible to calculate complex models, the simple

RCI RB model is expected to provide similar results. 

It is important to highlight that our results apply only to Craw-

ford and Howell’s model for RCI RB . In contrast to other models for

calculating practice effects, Crawford and Howell (1998) and Craw-

ford and Garthwaite ( Crawford et al., 2012 ; Crawford and Garth-

waite, 2007 ) recommend using a t-distribution for standardized

discrepancies between observed and predicted scores. According to

these authors, the t-distribution treats the statistics from the re-

gression equation as sample statistics and not as population statis-

tics with known means and SDs. Additionally, the p-value associ-

ated to t-scores tests whether the discrepancy between observed

and predicted scores is an observation from the sample used to

build the equation. In Crawford and Garthwaite’s words, “The p

value used to test significance is also a point estimate of the pro-

portion of the population with the same value on the predic-

tor variable (i.e., X) as the patient who would obtain a discrep-

ancy more extreme than that which was observed for the patient”

( Crawford and Garthwaite, 2007 , p. 613). Thus, the question re-

mains of whether the RCI RB provides any benefit over raw scores

when the case’s score on the predictor is likely to fall outside the

range of scores in the sample used to build the equation. In this

case, the range of raw scores would discriminate between individ-

uals (e.g., aMCI vs. cognitively healthy individuals) and the case un-

der study could not be considered as an observation of the sample

used to build the regression equation even before calculating prac-

tice effects. 

Our results seem to support this hypothesis. The RCI RB for de-

layed recall scores, which showed a lower overlap between the

aMCI and NC groups, identified a very small number of individuals

showing low PE and were not significant for predicting AD. Relat-

edly, raw delayed recall scores outperformed the dichotomous PE

variable for identifying progression to AD. Conversely, recognition

scores for the MCI group were on average 1SD below the NC group

as found in previous research comparing cognitively normal and

cognitively impaired individuals ( Spaan et al., 2005 ). Thus, recogni-

tion scores had a higher overlap between aMCI and NC groups than

did delayed recall scores, and proved to be more effective than

APOE- ε4 and FDG-PET values to predict the AD-risk. Indeed, the

dichotomous practice effects variable for recognition hits proved

to be the best predictor of progression to AD, better than discrim-

ination and response bias indices from the recognition task ( De Si-

mone et al., 2019 ) and also better than the continuous practice ef-
fects variable. As shown by the small overlap on the delayed recall

scores, this could be an artifact of using a regression formula for

values (i.e., values from individuals with MCI) that are outside the

range of the values used to build the regression equation (i.e., val-

ues from cognitively normal individuals). 

An alternative, but related explanation is that the floor effect

on delayed recall scores could prevent individuals with aMCI from

showing a test-retest discrepancy in the range of that found in

NC individuals, which could explain that the RCI RB for delayed re-

call scores identified a small percentage of individuals with aMCI

showing low practice effects (i.e., < 5%). The distribution of resid-

uals in the NC group showed that the 5th percentile corresponds

to discrepancies equal to or higher than -4.74 items. The small av-

erage discrepancy between predicted and observed delayed recall

scores in the aMCI group, along with the floor effects on observed

delayed recall scores, might cause the difficulty in identifying in-

dividuals with extreme discrepancies. Nation et al., (2019) built a

regression line including nondemented individuals from the ADNI

database, which eliminates this limitation as the range of scores

for the regression equation includes scores from individuals with

MCI. However, Nation et al., (2019) combined both immediate and

delayed recall scores, and did not use recognition hits in their cal-

culations. Thus, no comparison between Nation et al.’s results and

the results reported here is possible. In contrast, the residual dis-

tribution of recognition hits in the NC group showed that the 5th

percentile corresponds to discrepancies equal to or higher than -

3.58 items. The small average discrepancy between predicted and

observed recognition hits in the context of higher average raw

scores, may increase the possibility of showing extreme discrep-

ancies and being classified as showing low PE. 

Our results showed that low PE were associated with lower A β
levels and higher Tau and p-Tau levels in CSF, supporting the data

indicating that more CSF A β concentration and neural damage is

associated with reduced practice effects ( Duff et al., 2017b , 2014 ;

Jutten et al., 2020 ; Mormino et al., 2014 ; Nation et al., 2019 ), al-

though the size of the association was small. However, notable

differences between studies must be highlighted. Mormino et al.,

(2014) analyzed the association between practice effects and A β in

cognitively normal individuals, and both Mormino et al., (2014) and

Duff et al., (2017b , 2014 ) assessed A β concentration with PET tech-

niques, whereas we used A β and Tau levels in CSF. 

One of the most important differences between the present

and previous works analyzing the association between RCI and A β
concentration is the sample size, which might be the reason for

the differences in the effect size of the correlations, and also for

the absence of statistical significance of standardized discrepancies

in the survival regression. On the one hand, after calculating the

RCI RB in a large sample we found that the dichotomized variable

PE outperformed the continuous standardized discrepancy variable

related to PE, which was not significant for identifying progression

to AD in either simple or complex models. On the other hand, us-

ing z-scores from small samples is likely to bias the results by in-

flating the Type I error ( Crawford and Garthwaite, 2012 ). For exam-

ple, a standardized discrepancy of -1.645 is associated with a 4.99%

probability when a z-score is used. When a t-distribution is used, a

standardized discrepancy of -1.645 is associated with an 8% proba-

bility for a sample of size n = 5, and equals the probability associ-

ated with z-scores when the size of the sample is greater than 300.

Crawford and Garthwaite (2005) reported that the rate of possible

misclassifications increases with the use of z-scores compared to

t-values even for samples of size equal to or higher than 100. In-

deed, stable means and standard deviations (and, thus, the possi-

bility of using z-scores) are found when the size of the sample is

greater than 85 regardless of the level of skewness ( Piovesana and

Senior, 2018 ). 



J. Oltra-Cucarella, M. Sánchez-SanSegundo and R. Ferrer-Cascales / Neurobiology of Aging 112 (2022) 111–121 119 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The size of the sample used in the present study to calculate

PE is larger than the minimum sample needed to run a multi-

ple regression with 4 predictors ( Green, 1991 ; Tabachnick and Fi-

dell, 2013 ), and reduces the probability that the distribution of

residuals was a concern ( Lumley et al., 2002 ; Williams et al., 2013 ).

The similarity in confidence intervals for the sample estimates and

bootstrap estimates supports this conclusion. Relatedly, concerns

regarding the distribution of residuals for regressions with small

samples ( Lumley et al., 2002 ), and the fact that small samples are

only powered to identify large effects that become smaller as the

size of the sample increases ( Button et al., 2013 ), both have been

related to unreliable results. These reasons seem to support the use

of a t-distribution for the calculation of PE ( Crawford and Garth-

waite, 2012 ; Crawford and Howell, 1998 ), with the use of a di-

chotomous PE variable rather than a continuous standardized dis-

crepancy. 

Our results have limitations that must be highlighted. The find-

ings reported here are applicable to individuals who are adminis-

tered two alternate forms of the same test in a 6 months follow-

up period. This wide follow-up period may preclude the utility of

these findings for inclusion of individuals with aMCI in clinical

trials. Practice effects calculated over shorter periods ( Duff et al.,

2017b , 2014 ) may provide a more feasible way of identifying indi-

viduals with aMCI at a higher AD-risk who can be rapidly included

in prevention or intervention trials. 

The procedures used in the ADNI may also affect the results.

Regarding the assessment of memory abilities, the ADNI includes

two alternate versions of the AVLT. Although practice effects have

been reported even for alternate versions ( Beglinger et al., 2005 ),

the second version of the AVLT may be harder than the first and

may explain in part the lower performance at follow-up, mostly for

individuals with lower memory ability levels ( Crane et al., 2012 ) as

is the case in individuals with aMCI. Also, the use of one single

memory test for the aMCI diagnosis in the ADNI has been related

to a number of false positive MCI diagnoses, which in turn have

been associated with low rates of progression to AD ( Bondi et al.,

2014 ; Edmonds et al., 2015 ; Oltra-Cucarella et al., 2018c ). Thus, the

utility of PE on either delayed recall or recognition scores from a

verbal memory test must be replicated in samples of individuals

diagnosed with MCI using other MCI criteria. When diagnostic cri-

teria other than those developed by Petersen have been used to

analyze PE in the ADNI database, delayed recall scores have been

statistically significant to predict the AD-risk ( Nation et al., 2019 ).

However, the use of composite scores of both immediate and de-

layed recall scores precludes comparisons with our methodology. 

Rather than being considered as a source of error, practice ef-

fects may provide valuable information for the identification of in-

dividuals with aMCI at the greatest risk of progressing to AD. Our

results showed that RCI RB models may be useful for estimating PE

when large samples are used to build the regression equations,

with risk estimates similar to those obtained with APOE- ε4 geno-

type. Our data highlight the need to investigate whether PE are

more suitable for variables in which individual case’s scores fall

within the distribution of scores in the control sample. Whether

complex models including cognitive, demographic and clinical vari-

ables provide more accurate risk estimates of the progression to

AD than simple RCI models also needs to be analyzed in future

works, especially for small samples and when the same version of

the test is used in serial assessment. The findings reported here

could also be useful for interpreting the results of clinical trials

( Brooks and Loewenstein, 2010 ), as it has been shown that it is im-

portant not only to identify changes in raw scores over a 6 months

period but also to identify whether negative discrepancy between

observed and expected scores are uncommon in healthy individu-

als who do not progress to AD. 
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